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MIXED SPATIAL PROBLEMS OF ELASTICITY THEORY WITH A 

CIRCULAR LINE SEPARATING THE BOUNDARY CONDITIONS* 

R.V. GOL'DSHTEIN and YU.V. ZHITNIKOV 

Mixed problems for the Laplace equation in a half-space that occur in the 
theory of contact interaction and the theory of cracks are considered. 
The lines separating the boundary condition are considered to be 
circular, but the problem can be non-axisymmetric. Special integral 
relations are set up between the Fourier transform components of a 
harmonic function and its derivatives in the problems mentioned. The 
solution of a problem of an annular separation crack in an unbounded 
medium under non-axisymmetric loads is constructed as an example. Other 
examples are contained in /l-7/ and in the preprint"" where the contact 
problem is considered. 

The method used in this paper to construct the fundamental relationships is closest to 
that proposed in /3/. Different approaches to the construction of the solution of the mixed 
problems for a harmonic function in a half-space with circular interfacial lines are con- 
sidered in a non-axisymmetric formulation in /l-4/. 

1. F~~aZ rwpresentutions for a lxamimic function. Let f(r, p, xg) be a harmonic 
function in the half-space z,>O((r,p,.zg) are cylindrical coordinates). It can be represented 
in the form of the series 

A, (4 = 5 f, trl 0) f, (q,r) r dr 
0 

Let us first examine the case n&O. We use well-known representations to transform 
expressions (1.1) 

JJ @j_ _&) r (+) (;)-’ = 5 (1 - t2)+f.cos zt at, Rev>-+ (f-2) 
-1 

J,J'(_&~)($-)' =2{(ta-- l)-+.'lsin ztdt, O<Rw<+ 
C.3) 

1 

These representations can be considered as a Fourier transformation of functions(l - t2)+‘/~, 
(t2 - 1)-V-‘/. symmetric and antisymmetric with respect to the point t=o. 

We continue the left sides of (1.2) and (1.3) analytically, respectively, in the domain 
Rev < --'i,, Rev > '1,. We will here consider ri ht-hand sides as Fourier cosine and sine 
transforms of the generalized functions (1 - ta)~-“, (t” - i)?“. 9 

We set Y = -n in (1.2) and v=n in (1.3) and take z = rp. Then 
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J,stP (- qn - 
2 (Zn - 1)!1 

q” = 

s 
(x2 _ rz)-“-‘ir 

+ sm qx ax 

0 

Substituting these expressions into (1.1) and changing the order of integration, we 
obtain 

$‘,f’ (z, x3) = $ 
i o 

A, (q) exp (-- qx3) q-n+1 cos qx dq (1.5) 
0 

f, = I* (2n - i)l! (- I)n f (x2 - r”)T”@ (s, x3) dr wt 

t#~‘(z, XJ = 4 
f o 

A, (q) exp (- qx3) q-“+I sin qx dp (1.7). 
0 

From (1.1) for 4, (q) we have J, (Qr) - (V)" as q-r 0. Therefore, the function in 
the integrand of (1.5) and (1.7) is integrable and damps out as CQ-+C-. We shall still 
assume that n>o. Then f, in (1.4) and (1.6) damps out as r+.%,z3-oo. The functions 
tP?a@f &, .Z*), *,(a) fs, 59) here satisfy the two-dimensional Laplace eguation and are analytic. 

‘We now consider the following expressions for f,,(r,x3) and &, ff, X&&Q, that are 
necessary to construct the integral relations. We take the derivative with respect to .z9 in 
(1.4). 

Then taking account of the integral %I(') within the limits from 0 to x we obtain by 
using the relationship (1.7) 

We will use the relations 

(-l;~~(x’-r~);“~r=(-l)~(zn-l)ll(r~-r~);”-”’ 

;~~~[~ (r2 - J?);"] = (2% + I)!! (P - xa)?'z 

(1.9) 

to set up a connection between (1.8) and (1.6). 
The first relation in (1.9) is obvious, the second is proved by mathematical induction. 
We introduce the function 

Then by using (1.9), we obtain that (1.8) and 11.6) take the following form after 
tegration by parts /3/ 

af,_ 
al3 

_ +.' __jte);'ilxln+l~Ir)(5,1Q)(iX 

f,(r,zJ = Pi(zp - ~~)~~;~~(~,x~) dx 
0 

We will now use the relationships /3/ 

in- 

(1.10) 

(1.11) 

(1.12) 

Taking the integral by parts in (1.101, and then we multiply the relationship obtained 
by r" (x1* - ra)+-%dr, and (1.11) by r-” (r* - .q')+-"*r& with (1.12) taken into account, we 
obtain two representations for the functions Q)n(P)(l,z&, after integration between 0 and 00 
and differentiation of the second relationship with respect to q, and by comparing them we 
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obtain the first integral relation 

The following 
(St9 - r2)%, which 

To obtain the 

fl.13) 

notation has been introduced here: Wfr, x1) ss (rZ - xIa)-“~ and W(q, r) s 
will henceforth be used. 
second integral relation we take the derivative with respect to x3 in 

(1.6) and taking account of (1.5) and 11.7) we obtain 

af 
2 r= r”(2n - I)!] 5 alp 

(29 - ~~);“-“‘~dx 
0 

We will use the relationship (1.9) arid the relationship 

to set up the connection between (1.14) and (1.15). 
The proof of these relationships is analogous to the proof of the relationships 11.9). 

Then, taking the integrals by parts in f1.141 and (1.E.f. and taking account of the last 
relationships, by introducing the function 

we obtain 

Multiplying <X.16? and Il.,371 by F~fzzl"-" r*)+-%dF and F(SZ -xx"f;'*rdt respectivefy, 
and taking (1.12) into account we integrate between 0 and m. Then we differentiate the 
first of the relations obtained with respect to x1, after which we arrive at two represen- 
tations of the functions @'n(*)(z,rx3)r comparing which we obtain the second integral relation 

ai 
D &Xl f 

+- ($~r*)W(zIr r) dr A __.+L& r**'Wfr,rc,)dr 
D 

D, = Inn,,,, (f/F 

This last intearal relation and the relationshin (1.131 were obtained for the case n>O. 
These relationships-also hold for the case when _ n< 0 by replacing n therein by 
and will have the form 
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Therefore, the relationships obtained connect the value of f,, and @~!c%,. In particular, 
in the construction of the solution of the mixed problem of elasticity theory in the half-space 
x3 > 0, when for r>R we know that af,lax,, zg = 0, while for r< R, f, (r, Oh so it is 
convenient to use (1.19). If f, is known for xa = 0 and r>R, while for r< R,s, = 0, 

afnk, then (1.18). 
We now examine the more general case of the mixed problem with two interfacial lines of 

the boundary conditions. Let a boundary condition be given for ra = 0 

We introduce the notation aflax, = x1 k, PI, 0 < r < B; afjh = X2 tr, B), r 2. a. Then we 
have asystemof equations for .r, =0 from (1.18) and (1.19) 

x#-‘I’W (r, gf dr + S xenrX-“W (r, Y) dr = F, (y) 0 < Y < R (1.21) 
I 

E; (y) = - 5 X,crknLW (r, y) dr 
Y a 

H 
- .Pm [ 4 + Y j ap @h,,r”‘) W (g, r) dr ] 

0 
m 

F, (y) = - f xp+lW (y, r) dr + yarn+++ 5 G (v2pY W (r, Y) dr 
R Y 

To obtain the solution of system (1.21), we regularize it. We multiply the first equation 
by (~2 - x')-'$dy and integrate it between x and R and then differentiate with respect to 
2. We multiply the second equation by &~(z~---y')-'~~ and integrate between a and x and then 
take the derivative with respect to x. We consequently obtain 

- x,,w-’ (P, R) r-m+1 
+ xl,, i- x”‘W (R, x) 1 9-s dr=$,(r) O,<x,<i? 

(L 

*z (x) = x’” -&- ‘I j F,.vW (6r, x) dy = P(f5 (R) W (R, x) - j F,‘W (y, xf dy) 
+ x 

(1.22) 

We note that in the specia; ~~~w~~ n(r,@) =O,O-<r<fi,(~~ (r, B) = 0, r>a the 
expression for the function 15, 85 in (1.22) simplifies to 

rdr O<x&R 

The system (1.22) already does not contain the singularity in the integrand for r = x. 
We will now examine the question of the method of solving this system. 
(re - x*)-l and (z* - P)-l, 

To do this, we expand 
respectively in the integrands of (1.22) in powers of r%a and 

rex-n and substitute into (1.22). We hence obtain 

(1.23) 

X~,=-$[&(X)- ~C~x-z(h+l)-mW(x,a)], x>a 
?,A 
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We multiply the first equation of system (1.23) by .@" (ar - xz)'&dx, and the second by 
~-Y'+'l-m (2" - R=)rlSxdx and integrate, respectively, between 0 and R and between a and co. 
We obtain the system of algebraic equations 

m 

Ak = S x2,, (W-1 (r , R) r-*k-l+m dr 
a 

Cr = f X&V-~ (a, r) r2k-+ldr 
0 

(1.24) 

The theory of infinite systems is discussed in 191, for example. The solution of the 
infinite system of algebraic Eqs.(l.l) obtained will be examined below by the method of 
reduction in the example of mixed problems of elasticity theory /9/. 

2. Fundamental representations of elasticity theory for a nomd problem. Examples of 
the computation. Let a disc or annular crack B be in the z9 = 0 plane in an X,&X, 
svstem of coordinates for normal loads siven on its surfaces. The normal displacement I& = u 
and stress oSs in the xg = 0 plane will be described in terms of the harmo&.c function f 

The expression for the remaining displacement and stress components is in 13/. 
The boundary-value problem for the half-space z,<O has the form 

As an illustration we consider the case of a disc crack of radius a. We use the 

cra3 = 21” ‘1 - ,. -&)$ (2.1) 
u= 2-22y-.I&- f iI J 

relationships (1.18) and taking account of (2.2) obtain 

Multiplying !2.3) by zdx (.i? - y")"Y and integrating between r and a we obtain 

(2.3) 

(2.4) 
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This result agrees with that obtained in /3/. 
We will now examine the case of an exterior crack of radius a, 56 = (a, CQ). We use the 

relationship (1.19) and taking account of (2.2), we have 

a Multiplying this relationship by xdx(r2 -z)- 'I* and integrating between Q and P we obtain 

u, = - w r-In1 s2l”IW (r, 5) dx (~,,y-lnl+lW (y, x) dy r > a (2.5) 
(I x 

Expressions (2.4) and (2.5) determine the Fourier components of the expansion of the 
displacement in terms of the Fourier components of the stresses. Multiplying these expressions 

by $"(P and summing while taking into account 

we obtain 

.(r,rp)=-~~~~u(y,pjZW(z,r)W(.~,y)ydydxd~ 

0 ro 

(2.6) 

Z = (x” - y2r2)/(r2y2 - 2ryx2 cos (@ - cp) + x4) 

The first relationship in (2.6) is identical with that obtained in /3/. 
We now examine the case of a ring crack b<r<a and a load o (r, f3, 0)= u. (r) -!- umeim@ 
In this case the displacement will have the form 

u (r, p) = u. (r) + u,ein’p 

Correspondingly, the intensity factors are K = K(O) + K(“%+P. 
The dependence of K, on bla for a,,, = a,, = u = const and 

"4 = 1,2 is displayed in the figure for the crack boundary 
for r = b (the solid lines) and r = a (the dashed lines). 
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